Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR

نویسندگان

  • Ulf Grenander
  • Michael I. Miller
  • Anuj Srivastava
چکیده

Deformable template representations of observed imagery, model the variability of target pose via the actions of the matrix Lie groups on rigid templates. In this paper, we study the construction of minimum mean squared error estimators on the special orthogonal group, SO(n), for pose estimation. Due to the nonflat geometry of SO(n), the standard Bayesian formulation, of optimal estimators and their characteristics, requires modifications. By utilizing Hilbert-Schmidt metric defined on GL(n), a larger group containing SO(n), a mean squared criterion is defined on SO(n). The Hilbert-Schmidt estimate (HSE) is defined to be a minimum mean squared error estimator, restricted to SO(n). The expected error associated with the HSE is shown to be a lower bound, called the Hilbert-Schmidt bound (HSB), on the error incurred by any other estimator. Analysis and algorithms are presented for evaluating the HSE and the HSB in case of both ground-based and airborne targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IEEE Transactions on Pattern Analysis and Machine IntelligenceHilbert - Schmidt

In a deformable template representation of observed images fundamental to mod-eling the variability of target pose is the action of the matrix Lie groups (such as SO(n)) on rigid templates. For the problem of target identiication using remote sensors , a Bayesian approach constructs a posterior distribution on the rotation group from which the conditional expectations can be generated. Due to t...

متن کامل

Clutter Modeling and Performance Analysis in Automatic Target Recognition 1

The past decade has witnessed rapid development in accurate modeling of 3D targets and multiple sensor fusion in automatic target recognition (ATR), however, the scientiic study for quantifying non-target objects in a cluttered scene has made very limited progress, due to its enormous diiculties. In this paper, we study two important themes in ATR: I) clutter modeling { how can we build generic...

متن کامل

G-frames and Hilbert-Schmidt operators

In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998